
The first derivative of Ozz with respect to z determines Ozx and Ozy, and the combina- 
tion of Ozz and its second derivative with respect to z determines the remaining components 
of the stress. These two functions must satisfy the condition that the integral (3.2) must 
vanish on the contour F. This condition is a consequence of the assumption that the stressed 
state does not contain a normal rotation (G = 0) and can be used in the algorithm in order to 
reduce the errors of the starting measurements. 

Problems formulated in this manner have thus far been solved only for the axisymmetric 
stressed state [4, 7]. The stressed state not containing normal rotation is significantly 
more extensive and contains an axisymmetric state as a particular case. 

In conclusion it is my pleasant duty to thank Kh. K. Aben for proposing the subject and 
also for his constant well-meaning interest in this work. 
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DYNAMIC DUCTILITY PEAK WITH HIGH-VELOCITY FAILURE OF METAL SHELLS 

S. P. Kiselev UDC 539.375.5 

An explanation of the dynamic ductility peak [i] is given. It is shown that this effect 
is connected with a sharp deterioration in metal ductility properties with a strain rate of 

~ l0 s sec -I 

The failure of cylindrical metal shells expanding under the action of detonation products 
with high strain rates of e > 104 sec -1 was studied in [1-4]. Here it was detected that 
high-velocity failure exhibits a number of features which relate to existence of a scale 
effect and a dynamic ductility peak. 

An explanation of these features will be sought within the scope of describing failure 
as a two,stage process [2]. The first stage consists of damage accumulation with plastic 
flow. In the second stage by crack propagation there is separation of the shell parts due 
to stored elastic energy. 

We divide the process of damage accumulation into two stages. We assume that in the 
first stage there is accumulation of point defects, and in the second there is growth of 
pores which are the result of merging of point defects. Similar to [5] we shall assume that 
defects arise with unconservative movement of steps which form from the intersection of 
edge and screw dislocations. Then from [5] it follows that the concentration of defects 
c d = f(e). Since occurrence of pores occurs with some critical concentration of them c~, 
the material should experience some strain s 0 prior to pore growth commencing. 

In the second stage pore growth is determined by the viscosity and inertial properties 
of the material. This assumption is correct with high strain rates. According to [6] the 
equation for pore radius has the form 
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where ql is a constant value with a dimension of viscosity; o 0 is threshold stress; o m = 
oii/3 is tensile spherical part of the stress tensor. From Eq. (i) we find the character- 
istic time for pore growth 

tp :-: q~/(an~ - -  %).  ( 2 )  

Taking this into account we write an equation for failure strain as 

f I t~ 

s p= j' "~'dt + ,[ ~dt. ( 3 )  
�9 0 t l ?. 

Assuming that ~0= ~dt and considering that ~ = const for ~ > e0, we find that 
0 

~p : .  s,, q- ~'tp (4) 

(tp = t* - tl). The assumption of ~ = const corresponds to the fact that the shell expands 
with a constant velocity with s > s0. As will be shown below, with E > ~0 pressure in the 
detonation products is small, and therefore acceleration of the sheli may be ignored. In 
deriving Eq. (4) the time for crack propagation through the shell was ignored since as will 
be shown below it is an order of magnitude less than the time for failure t*. 

In order to determine o m we consider the stressed state of a shell within the scope of 
the Prandtl-Reis elastoplastic model [7, 8]: 

~ - - - p + s ~ ,  s ~ - s " ~  -';~ ( s~) - ,  ~'; .... 2~(; ,~-v~i~/v)  iJ/v ~ - !  ~ : , + ~ , z  ~,~,:~ ( 5 )  

(o i ,  S i ,  c i ,  p ,  V, ~, Y a r e  p r i n c i p a l  s t r e s s e s ,  s t r e s s  d e v i a t o r s ,  s t r a i n s ,  p r e s s u r e ,  s p e c i f i c  
vo lume ,  s h e a r  m o d u l u s ,  and y i e l d  s t r e n g t h ) .  E q u a t i o n s  (5 )  s h o u l d  be  s u p p l e m e n t e d  by e q u a -  
t i o n s  o f  movement  and e n e r g y .  The c o m p l e t e  s e t  o f  e q u a t i o n s  i s  g i v e n  f o r  examp le  in  [7 ,  8 ] .  
In  t h e  c a s e  o f  p l a n e  s t r a i n  f o r  a s h e l l  t h e  f o l l o w i n g  r e l a t i o n s h i p s  a r e  v a l i d  

~:~ -.- O, f / IV<< ~.~, V / V  << e~. (6 )  

By substituting Eqs. (6) in set (5) we obtain 

t , , 2 

~2 ~ - ~1, ~ > o, s3 = o, s2 ~ - s l  ~ ~ : ~ ,  s~ = y / # ~ ,  s l  = - r / / ~ ,  ~ - ~1 = 7 r ,  ( 7 )  

whence 

~ -- ( ~1 + ~)/2. (8) 

The value of 01 varies from -Pd (at the inner shell surface) to zero (at the outer shell sur- 

face), and therefore loll < Pd [Pd is pressure in the detonation products (DP) in the vicinity 
of the shell]. We evaluate Pd in the range t I < t < t*. Assuming that DP expansion is 

adiabatic, we find that Pd = p0(R0/a)27, a = (i + E0)a 0, P0 = Pi/2 (R0, a0 are initial DP 
radius and internal shell radius). By substituting data from [3]: R0/a 0 ~ 1/2, 7 = 3, Pi = 
25.2 GPa (TG50/50), e 0 ~ 0.3, we obtain Pd = 0.04 GPa, la1[ < Pd" Since for material St. 20 
[3] Y = 0.4 GPa, from the last equation of (7) we find that 01 ~ o2, o2 ~ Y- By substitu- 

ting these relationships in Eq. (8) we have 

~.~ ~ ~2J2 ~ Y/V~Z ( 9 )  

E q u a t i o n  (9 )  and t h e  a s s u m p t i o n  v = c o n s t  when e > eo ( t l  < t < t * )  a r e  c o n f i r m e d  by 
numerical calculations in a computer. The problem was solved in the unidimensional case for 
the geometry shown in Fig. i. The shell was described by a Prandtl-Reis elastoplastic model, 
and the DP were described by a model of an ideal gas with 7 = 3. Calculations were carried 
out by a "cross" difference scheme using a mobile Euler grid. The calculation procedure is 
described in more detail in [8, 9]. The shell material was St. 20 with the parameters @ = 
7.8 g/cm s, E = 200 GPa, U = 84 GPa, Y = 0.43 GPa (E is Young's modulus). Shell internal 

radius a 0 = 2.1 cm, and external radius b 0 = 2.19 cm. The detonation products at instant 

t = 0 were found in a cylinder with radius R 0 = 0.5 cm with the parameter P0 = Pi/2, Pi = 
25.2 GPa, P0 = 1.65 g/cm 3 (TG50/50). The radius of the cylinder with DP was selected some- 
what less than in the experiment (R 0 = 0.75 cm) with the same shell velocity. This is con- 
nected with the fact that in calculations no consideration was given to outflow of DP through 
the shell ends. Given in Fig. 2 is the dependence Om($) (curve i) calculated in a computer for 

= 3.72.10 ~ sec -I, e = 0.56 [$ = (r - a)/(b - a), r is shell coordinate, a and b are internal 
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and external shell surface coordinates]. It can be seen from Fig. 2 that Om(r) changes weakly 
through the shell thickness and it agrees well with the o m = 0.28 GPa (line 2) found from 
Eq. (9). Shown in Fig. 3 is the calculated dependence of mean mass shell velocity on time. 
The cross relates to strain s 0 = 0.3, and the vertical mark corresponds to the instant of 
shell separation. It can be seen that in the range g > s0 shell velocity is almost constant~ 
Assuming in (2) that o0 = 0 and taking account of (9), we find that 

4 = V ~ m / r .  ( i o )  
By substituting tp in Eq. (4) we obtain the equation sought for Ep: 

~ -- ~o + I/-~],~/Y. (11) 

We assume that the yield strength is a function of strain rate Y = Y($) and we use ex- 
perimental results from [3] in order to determine the function Y(~) and constants E0, Hi. 
Given in Fig. 4 are experimental results [3] (notation from [3]) and the curve sp(~) approxi- 
mating them, where gp= (bp - b0)/b 0, ~ =v/b 0, b 0 and bp are shell radii with t =0 and at the in- 
stant of failure (the dependence sp(log&) (~ = v/bp) was studied in [1-4]). Assuming that 
Y = Y0 = 0.43 GPa with ~ < 103 sec -i, from Fig. 4 and Eq. (ii) we find that s 0 = 0.3, ~l = 
3.1.103 Pa.sec and the dependence Y(~) given in Fig. 5. 

A typical feature of the Y = Y(~) curve obtained is the weak dependence of Y on ~ with 
< 7'104 sec -i and a sharp increase of Y for ~ ~ 10 s sec -I A dependence is given in [i0] 

for yield strength on shear rate for aluminum obtained in compression-shear tests. It can 
be seen that with ~ ~ l0 s sec -i a strong increase is observed in the yield strength of alumin- 
ium, and the Y(~) curve conforms qualitatively with that found in this work (Fig. 5). In 
the range ~ < 7.104 sec -i the dependence Y(~) may be described within the scope of the visco- 
plastic model 

) ~ - -  Yo + qs (12) 

(4 = 3.42"103 Pa'sec is metal viscosity). Whence it follows that Hi conforms with metal 
viscosity qo 

In [ii, 12] from experiments on explosive welding steel viscosity ws found in the range 
of interest to us i04 sec -i < ~ < l0 s sec -i which varies within the limits q = (6-10)-10 ~ 
Pa.sec. This value exceeds q by a factor of two to three found in this work. The difference 
may be explained if it is assumed that viscosity depends not only on strain but also on the 
amount of strain q = n(~, e) [13]. The greater the strain, the greater the defect density, 
and therefore relaxation proceeds more rapidly and the importance of viscosity will be less. 
For example, in [13] in Fig. 1 it is shown that an increase in strain from 0.06 to 0.6 leads 
to a reduction in viscosity by a factor of three for A1 ii00. In determining the viscosity 

of metals in [ii, 12] total material displacement S = ~z(y)dy is used which arises with weld- 
0 

ing by explosion (z is horizontal displacement, s is plate thickness). We estimate the value 
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of average strain by the equation ~ = S/s By substituting in this equation numerical values 
from [12]: s = 8 mm, S < 0.54 mm 2, we obtain the estimate sought ~ < i0 -~. Since up to the 
instant of failure the steel undergoes essentially higher strain welded plates, then the vis- 
cosity obtained in this work is less than in [II, 12]. The difference noted above in vis- 
cosities is not connected with the effect of temperature since shell heatin$ does not exceed 
i00 K (~T = oe/(cpp), ~ ~ 0.6, o ~ Y = 0.43 Gpa, p= 7 g/cm ~, cp=0.46 J/(g.K), whence~T= 80 K). 

In the range ~ > 7.104 sec -I there is a sharp deterioration in metal ductility properties 
(rapid increase in Y) which leads to occurrence of a ductility peak on the ep(~) curve (see 
Fig. 4). 

We consider the second stage of failure, i.e., separation of the material into parts. 
By equating the elastic tensile energy to the energy going into forming free surface I we 
obtain an equation for determining the number of fragments 

}~L~E :- ~. (13)  

S u b s t i t u t i n g  Eqs .  (11)  and (12)  in  (13)  and u s i n g  t h e  e q u a t i o n  n = 2 ~ b p / s  we f i n d  an e q u a -  
t i o n  for the number of fragments 

2 vrg t + + (I + % + t + - -  (14) n -- E~ l~0Y(, ]" 

Equation (14) is studied with velocities v < 1.6 km/sec since with high velocities the number 
of fragments s is determined by shell thickness [3]. A typical feature of Eq. (14) is the 
clearly expressed scale effect n(b o) noted previously in [3]. Given in Fig. 6 is the depen- 
dence n(v) for a fixed shell radius b 0. The curve is described by Eq. (14) with N = 3.4"10a 
Pa.sec, Y0 = 0.4 GPa, E = 200 GPa, b o = 2.1 cm, s0 = 0.3, I = 1J/cm 2. Points 1 relate to an 
x,ray test, and 2 relate to tests for arresting fragments in sawdust [3]. It can be seen 
that theoretical curve (14) describes quite well tests for arresting fragments in sawdust. 
Some difference in x-ray tests is apparently connected with recording to fine fractions of 
fragments in these tests. 

By using Fig. 6 we estimate the characteristic time for the second stage t 2 z s 
Assuming that v = i mm/sec, from Fig. 4 we find gp = 0.78, and from Fig. 6 the number of 
fragments n = 40. The size of a fragment is determined by the equation g = 2~(i + ep)b0/n, 
whence s = 0.58 cm, t 2 = 1.2 usec with c = 5 km/sec (c is speed of sound in steel). The 
time of shell expansion to failure for the case given t* = ep/~ = 16 usec. The value of t* 
is an order of magnitude greater than t 2 which proves the correctness of the approximations 
made in deriving Eq. (4). 

It should be noted that power dependence Y(~) given in Fig. 5 is typical for "soft" 
metals. The sharp increase in Y with ~ ~ 10 s sec -I is connected first with limitation of 
dislocation velocity which does not exceed the speed of sound. For "hard" metals a linear 
dependence Y(~) is typical with a high viscosity coefficient ~ [14]. Intense strengthening 
arises as a result of retardation of dislocations at impurities, grain boundary walls, and 
other lattice defects. The model suggested in this work for the ductility peaks relates to 
"soft" metals, and the model in [I] relates to "hard" metals. For "soft" metals it is neces- 
sary to produce higher plastic strain prior to accumulation of considerable damage since the 
ductilityipeak is connected with the first stage. In changing over to "hard" metals damage 
accumulate rapidly (e.g., as a result of the Stroh mechanism [15] and others) and the ductility 
peak is connected with the second stage, i.e., separation of the material into parts. This case 
case is described in the model in [i] which leads to higher values of N and I than for the 
model given. 

LITERATURE CITED 

i. A.G. Ivanov, "Features of explosive deformation and failure of tubes," Probl. Prochn., 
No. ii (1976). 

2. A.G. Ivanov and V. N. Mineev, "Scale effects with failure," Fiz. Goreniya Vzryva, No. 5 
(1979). 

3. A.G. Ivanov, L. I. Kochkin, V. F. Novikov, and T. M. Folomeeva, "High-velocity failure 
of thin-walled tubes made of soft steel," Zh. Prikl. Mekh. Tekh. Fiz., No. i (1983). 

4. A.G. Ivanov, "Phenomenology of failure and spalling," Fiz. Goreniya Vzryva, No. 2 
(1985). 

5. M.A. Mayers and L.!E. Murr, "Formation of defects with shock-wave deformation," in: 
Shock Waves and High-Velocity Strain Phenomena for Metals [Russian translation], M. A. 
Mayers and L. E. Murr (eds.), Metallurgiya, Moscow (1984). 

258 



6. D. R. Curran, L. Simon, and D. A. Shockey, "Microstructure and dynamics of failure," 
in: Shock Waves and High-Velocity Strain Phenomena for Metals [Russian translation], 
M. A. Mayers and L. E. Murr (eds.), Metallurgiya, Moscow (1984). 

7. F. A. Baum, L. P. Orlenko, K. P. Stanyukovich, et al., Explosive Physics [in Russian], 
Nauka, Moscow (1975). 

8. S. P. Kiselev and V. M. Fomin, "Disintegration of a shell taking account of failure and 
outflow of detonation products between fragments," Zh. Prikl. Mekh. Tekh. Fiz., No. 4 
(1989). 

9. M. L. Wilkins, "Calculation of elastoplastic flows," in: Computation Methods in Hydro- 
dynamics [Russian translation], Mir, Moscow (1967). 

i0. R. J. Clifton, "Dynamic Plasticity," in: Progress in Applied Mechanics [Russian trans- 
lation], Mir, Moscow (1986). 

ii. S. K. Godunov, A. A. Deribas, and V. I. Mall, "Effect of material viscosity on the pro- 
cess of jet formation with impact of metal plates," Fiz. Goreniya Vzryva, No. i (1975). 

12. N. N. Sergeev-Al'bov, "Residual stresses and ductility with high-velocity deformation 
of metals," Zh. Prikl. Mekh. Tekh. Fiz., No. 2 (1983). 

13. T. V. Zhukova, P. V. Makarov, T. M. Platova, et al., "Study of the ductility and relax- 
ation properties of metals in shock waves by mathematical modeling methods," Fiz. 
Goreniya Vzryva, No. 1 (1987). 

14. V. K. Borisevich, V. P. Sabel'kin, S. N. Solodyankin, et al., "Dynamic characteristics 
of some metal and alloys," in: Pulsed Forming [in Russian], No. 9, KhAI, Kharkov (1981). 

15. M. L. Bernshtein and V. A. Zaimovskii, Structure and Mechanical Properties of Metals 
[in Russian], Metallurgiya, Moscow (1970). 

ELASTOPLASTIC TORSION THEORY FOR WHISKER CRYSTALS 

I. L. Bataronov and A. M. Roshchupkin UDC 539.384/385.001:539.216.1 

i. Introduction. Plastic deformation of crystals is accompanied by the complex evolu- 
tion of internal elastic stress fields caused by self-consistent movement of conglomerates 
of crystal defects at different structural levels of deformation [i]. A specific role in 
formation of these elastic fields applies to the crystal surface [2] which thus appears to be 
incorporated in a number of factors which affect movement of the defect structure. In view 
of this with the microscopic nature of some of the linear dimensions of a crystal in the 
kinetics of plastic strain the structural level of deformation, whose size is comparable with 
the size of a crystal, becomes decisive. In this respect whisker crystals (WC) are unique 
model objects for studying in a "pure form" features of the development of plastic deformation 
in assemblies of defects of different hierarchical degrees of structural levels. In an ex- 
perimental respect torsion and bending are convenient methods for studying the ductility of 
WC [3], and the dislocation structure which forms is satisfactorily revealed by direct meth- 
ods [4]. It is of interest to obtain general relationships which connect the macroscopic 
reaction of a WC (i.e., the amount of torsion) to dislocations present within it with char- 
acteristics of the dislocation structure which emerges as a basis for theoretical analysis of 
the plastic behavior of WC in torsion and also in the general case in bending. 

In the present work in an approximation of macroscopically average description of the 
dislocation structure elastic torsion, and as a generalization bending, of whisker crystals 
caused by presence of dislocations in a crystal are considered. Relationships are found 
from the condition for minimum elastic energy which determine the macroscopic reaction of a 
whisker crystal to dislocations introduced into it. 

2. Statement of the Problem. Finding actual elastic dislocation fields located close 
to a surface is a very complex mathematical problem [2] for which there is not yet a satis- 
factory solution. In particular, the problem of torsion for a WC containing dislocations 
is currently solved in a general form only for the case of rectilinear screw dislocations 
parallel to the crystal axis. As shown by Eshelby [2], the twist angle for WC ignoring edge 
effects at is ends is expressed in terms of the value of the Prandtl torsion function at 
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